Annual Drinking Water Quality Report

LCPSA-KVS PWSID 1105405

INTRODUCTION

This Annual Drinking Water Quality Report for calendar year 2023 is designed to inform you about your drinking water quality. Our goal is to provide you with a safe and dependable supply of drinking water, and we want you to understand the efforts we make to protect your water supply. The quality of your drinking water must meet state and federal requirements administered by the Virginia Department of Health (VDH).

If you have questions about this report, please contact: Mike Brindle, LCPSA, Assistant Director 397 Park Street P.O. Box 830 Jonesville, VA 23263 Phone: (276) 346-7775

If you want additional information about any aspect of your drinking water or want to know how to participate in decisions that may affect the quality of your drinking water, please contact: Mike Brindle, LCPSA, Assistant Director 397 Park Street P.O. Box 830 Jonesville, VA 23263 Phone: (276) 346-7775

How can I get involved?

If you have any questions about this report or your water utility, please contact Mike Brindle at (276) 346-7775. We want our customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings held the fourth Tuesday of each month at 2:00 PM at the Lee County Public Service Authority Office, 397 Park Street, Jonesville.

GENERAL INFORMATION

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: (i) microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; (ii) inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (iii) pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; (iv) organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; (v) radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer who are undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Where does my water come from?

Water is provided by two 0.5 MGD each membrane filtration plants located respectively at the Blue Spring source and KVS quarry source. Water is sometimes purchased from the Arthur Shawnee Utility District and supplied by a 0.5 million gallon per day (MGD) filtration plant located on the Powell River near Harrogate, Tennessee.

Source Water Assessment and its Availability

The Virginia Department of Health, Lee County PSA, Tennessee Department of Health and the Arthur Shawnee Utility District updated source water assessments during 2022. The Powell River, Blue Spring, and KVS quarry were determined to be of high susceptibility to contamination using the criteria developed by the state in its approved Source Water Assessment Program. The assessment report consists of maps showing the source water assessment are and an inventory of known land use activities of concern. The report is available by contacting Mike Brindle at the phone number given elsewhere in this drinking water quality report.

DEFINITIONS

Contaminants in your drinking water are routinely monitored according to Federal and State regulations. The table on the next page shows the results of our monitoring for the period of January 1st to December 31st, 2023. In the table and elsewhere in this report you will find many terms and abbreviations you might not be familiar with. The following definitions are provided to help you better understand these terms:

Maximum Contaminant Level, or MCL - the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal, or MCLG - the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level Goal or MRDLG: the level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Maximum Residual Disinfectant Level or MRDL: the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Non-detects (ND) - lab analysis indicates that the contaminant is not present

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT) - a required process intended to reduce the level of a contaminant in drinking water.

Level 1 assessment - a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 assessment - a very detailed study of the waterworks to identify potential problems and determine (if possible) why an *E. coli* PMCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity, or cloudiness, of water. Turbidity in excess of 5 NTU is just noticeable to the average person. Turbidity is monitored because it is a good indicator of the effectiveness of our filtration system.

WATER QUALITY RESULTS

Regulated Contaminants

Contaminant (units)	MCLG	MCL	Level Detected	Violation (Y/N)	Range	Date of Sample	Typical Source of Contamination	
Nitrate (ppm)	10	10	ND	N	NA	2023	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
Fluoride (ppm)	4	4	ND	N	NA	2023	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories	
Barium (ppm)	2	2	0.012	N	NA	2023	Discharge of drilling waste; Discharge from metal refineries; Erosion of natural deposits	
Alpha Emitters (pCi/l)	0	15	ND	N	NA	2023	Erosion of Natural Deposits	
Combined Radium (pCi/l)	0	5	ND	N	NA	2023	Erosion of Natural Deposits	
Chlorine (ppm)	MRDLG = 4	MRDL = 4	1.5	N	0.94 -	2023	Water additive used to control microbes	
Haloacetic Acids (ppb)	NA	60	0.029	N	NA	2023	By-product of drinking water disinfection	
Total Trihalomethanes (ppb)	NA	80	0.032	N	NA	2023	By-product of drinking water disinfection	
Turbidity	NA	TT,1 NTU Max	0.1	N		2023	Soil runoff	
		TT, ≤ 0.3 NTU 95% of the time	100%	N	0.06 – 0.1			

Lead and Copper Contaminants

Contaminant (units)	MCLG	Action Level	90 th Percentile	Date of Sampling	# of Sampling Sites Exceeding Action Level	Typical Source of Contamination
Lead (ppb)	0	AL = 15	0.003	2021	None	Corrosion of household plumbing systems; Erosion of natural deposits
Copper (ppm)	1.3	AL = 1.3	0.0568	2021	None	Corrosion of household plumbing systems; Erosion of natural deposits

Monitoring Results for Sodium (Unregulated-No Limits Designated)						
Level Detected (unit)	Sample Date	Typical Source	Guidance			
3.24 (mg/L)	08/09/2023	Naturally Occuring; Addition of treatment chemicals/processes	For individuals on a <u>very</u> low sodium diet (500 mg/day), EPA recommends that drinkingwater sodium not exceed 20 mg/L. Should you have a health concern, contact your health care provider.			

The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data presented in the above tables, though accurate, is more than one year old.

MCL's are set at very stringent levels by the U.S. Environmental Protection Agency. In developing the standards EPA assumes that the average adult drinks 2 liters of water each day throughout a 70-year life span. EPA generally sets MCLs at levels that will result in no adverse health effects for some contaminants or a one-in-ten-thousand to one-in-a-million chance of having the described health effect for other contaminants.

VIOLATION INFORMATION – Did any PMCL or TT violation occur during the year? () Yes	(X) No	
If yes, an explanation of the violation, including length, potential health effects, and actions being taken t	to correct the violat	ion.
, , , , , , , , , , , , , , , , , , , ,		
VIOLATION INFORMATION – Did any monitoring, reporting, or other violations occur during the year?	() Yes	(X) No
If yes, an explanation of the violation, including potential health effects, and actions we are taking to corr	ect the violation, is	as follows:

ADDITIONAL HEALTH INFORMATION

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [NAME OF UTILITY] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800-426-4791).

Water Conservation Tips

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature.

• Take short showers - a 5-minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.

- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary.
- Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill! Visit www.epa.gov/watersense for more information.

Cross Connection Control Survey

The purpose of this survey is to determine whether a cross-connection may exist at your home or business. A cross connection is an unprotected or improper connection to a public water distribution system that may cause contamination or pollution to enter the system. We are responsible for enforcing cross-connection control regulations and insuring that no contaminants can, under any flow conditions, enter the distribution system. If you have any of the devices listed below please contact us so that we can discuss the issue, and if needed, survey your connection and assist you in isolating it if that is necessary.

- Boiler/ Radiant heater (water heaters not included) Underground lawn sprinkler system
- Pool or hot tub (whirlpool tubs not included)
 Additional source(s) of water on the property
- Decorative pond
- Watering trough

Source Water Protection Tips

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team.
- Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body.

Other Information - Sodium There is presently no established standard for sodium in drinking water. Water containing more than 270 ppm of sodium should not be used as drinking water by those persons whose physician has placed them on a moderately restricted sodium diet. Water containing more than 20 ppm should not be used as drinking water by those persons whose physician has placed them on a severely restricted sodium diet. For informational purposes, we wish to point out that the results of our most recent sampling (2023) indicate that your water has a sodium content range of 3.24 ppm.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. LCPSA - KVS is responsible for providing high quality drinking water, but cannot

control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead